Physical Components of Tensors
-10%
portes grátis
Physical Components of Tensors
Oliveira, Antonio Marmo De; Altman, Wolf
Taylor & Francis Ltd
12/2024
236
Mole
Inglês
9781138826427
15 a 20 dias
Descrição não disponível.
Finite-Dimensional Vector Spaces. Vector and Tensor Algebras. Tensor Calculus. Physical and Anholonomic Components of Tensors. Deformation of Continuous Media. Bibliography. Index.
Este título pertence ao(s) assunto(s) indicados(s). Para ver outros títulos clique no assunto desejado.
C1 C2 C3;Finite-dimensional vector spaces;Stress Energy Tensor;Subspaces;Covariant Derivative;Contravariant components;Christoffel Symbols;Covariant components;Tensor Product;Vector Algebra;Vector Space;Tensor Algebra;Sinx2 Cosx3;Tensor Calculus;Displacement Vector;Tensor fields;Reference Configuration;Gradient of a field;Ab Cde;Riemann-Christoffel tensor;Finite Dimensional Vector Spaces;Integral theorems for scalar and vector fields;Deformed Configuration;Physical and anholonomic components of vectors;Covariant Tensors;Physical and anholomic components of tensors;Tensor Components;Anholonomic connections;Physical Components;Deformation of continuous media;Rectangular Cartesian System;Stress tensor and equations of motion;Bilinear Functional;Strain-displacement relations for elastic bodies;Undeformed Middle Surface;Characterization of thin shells;Linearly Independent;Strain-displacement relations for shells;Piola Kirchhoff Stress Tensor;Kinematic relations for shells;Tensor Field;Linearized kinematics;Energy Density;Equations of motion for shells;Scalar Triple Product;Linearized equations of motion;Middle Surface;Constitutive equations for thermoelastic shells;Vector Field;Linear constitutive equations
Finite-Dimensional Vector Spaces. Vector and Tensor Algebras. Tensor Calculus. Physical and Anholonomic Components of Tensors. Deformation of Continuous Media. Bibliography. Index.
Este título pertence ao(s) assunto(s) indicados(s). Para ver outros títulos clique no assunto desejado.
C1 C2 C3;Finite-dimensional vector spaces;Stress Energy Tensor;Subspaces;Covariant Derivative;Contravariant components;Christoffel Symbols;Covariant components;Tensor Product;Vector Algebra;Vector Space;Tensor Algebra;Sinx2 Cosx3;Tensor Calculus;Displacement Vector;Tensor fields;Reference Configuration;Gradient of a field;Ab Cde;Riemann-Christoffel tensor;Finite Dimensional Vector Spaces;Integral theorems for scalar and vector fields;Deformed Configuration;Physical and anholonomic components of vectors;Covariant Tensors;Physical and anholomic components of tensors;Tensor Components;Anholonomic connections;Physical Components;Deformation of continuous media;Rectangular Cartesian System;Stress tensor and equations of motion;Bilinear Functional;Strain-displacement relations for elastic bodies;Undeformed Middle Surface;Characterization of thin shells;Linearly Independent;Strain-displacement relations for shells;Piola Kirchhoff Stress Tensor;Kinematic relations for shells;Tensor Field;Linearized kinematics;Energy Density;Equations of motion for shells;Scalar Triple Product;Linearized equations of motion;Middle Surface;Constitutive equations for thermoelastic shells;Vector Field;Linear constitutive equations